
Sexy async code without
await?
A first look into Project Loom in Java

What is this talk about?

● Blocking vs. non-blocking APIs
● Thread per request vs. event loop
● Callbacks and Futures?
● What is async/await?
● What is the blue/red world

problem?
● Project Loom = async/await in

Java?

About

Lukas Steinbrecher
Developer @ Senacor

lukstei.com
github.com/lukstei

lukas.steinbrecher@senacor.com

mailto:lukas.steinbrecher@senacor.com

Chapter 1
Threads and what is a

blocking call?

Super Duper Bank

“super duper product“:

• Giro account
• Savings account

Boss B. “The Boss” Bossy

>
You

Super Duper Core
Banking System

Super Duper Bank

Super Duper
Product
Service

You

HTTP/REST

<fill in>

HTTP/REST

Super Duper Bank

Boss B. “The Boss” Bossy

>
You

How many customers
can we serve?

I won’t fall!

Super Duper Core
Banking System

!

Simulation of 100 requests in Spring Web

Simulation of 100 requests in Spring Web

The thread

● Mechanism to provide multitasking in one process
● OS1 threads must support all use cases and programming

languages à not very optimized
● Context-switching slow
● Relatively heavy (> 2kb metadata, > 1mb stack size)

à OS Threads are a limited resource, ~up to a few 1000
threads on a normal computer

1 OS: Operating System

Threads in Java

● java.lang.Thread wraps native OS threads
● To create a thread, create an instance of

the Thread class and call the start()
method

● java.util.concurrent.Executors for a higher
level API (thread pools, etc.)

Source: https://www.d.umn.edu/~gshute/os/processes-and-threads.xhtml

https://www.d.umn.edu/~gshute/os/processes-and-threads.xhtml

Thread per request model

Super Duper Core
Banking System

Super Duper Product Service

Thread 1

Request

Response

Thread 100

Request

Response

…

Networking 101

● OS responsible for coordinating access to
external devices, e.g. network card

● OS provides primitives and functions
(syscalls) to access those resources

● à Sockets as the primitive to access the
network

● Every programming language uses this
primitives under the hood

Source: https://www.cs.dartmouth.edu/~campbell/cs60/socketprogramming.html

What happens inside a blocking syscall?

Source:
https://cfsamson.github.io/book-exploring-async-basics/4_interrupts_firmware_io.html
https://medium.com/martinomburajr/rxjava2-schedulers-2-breaking-down-the-i-o-scheduler-7e83160df2ed

Source: https://twitter.com/piscisaureus/status/776709749584826369

Blocking syscalls – what’s the problem?

● OS suspends thread until result of
operation is available

● To do n blocking calls at the same time
you need n threads

● The longer a call blocks the more
threads you need to serve more
requests à Network calls are slow

Avg. # of customers in system = arrival rate *
average time in system

For our case:
Avg. # threads needed = requests rate * response
time of external system

e.g.:
100 requests/s, 10s response time from CBS
Þ 1000 threads on avg. needed
Þ 1000 threads * ~1MB = 1000 MB memory

Example – Little’s law

But Simple and linear…but synchronous
calls are natural and

easy! :-/

Super Duper Bank

Boss B. “The Boss” Bossy

>
You

I think the bottleneck is
the thread count, Sir.

Super Duper Bank

Boss B. “The Boss” Bossy

>
You

We cannot accept this!
How can we fully utilize

our machine?

Chapter 2
Let’s fully utilize
our machine

Non-blocking syscalls as a solution for the
thread bottleneck problem

● Non-blocking syscalls do not suspend your thread à handle more than
one primitive per thread

● Different styles for non-blocking IO
○ Polling, Multiplexed Block, …

● epoll (Linux), kqueue (Mac), IOCP (Windows) popular APIs for non-blocking
networking – but all with different semantics

● libuv (Node.JS), mio (Tokio, Rust), Java NIO/Netty for Java: provide OS
independent abstractions for non-blocking IO

Asynchronous !=
non-blocking

Event based execution model

● Relies on async base –
“Don’t block the event loop”

e.g. Node.JS, Eclipse Vert.x,
Project Reactor/Spring
WebFlux

Source: https://howtodoinjava.com/spring-webflux/spring-webflux-tutorial/

def eventloop_main():
forever:
e = wait for next event
if there is a callback associated with e in our list:
call the callback

def read_from_socket_async(socket s, callback):
tell OS we are interested in events from socket s
save callback in our list

How do we handle the asynchronous
operations?

Recap: Synchronous style:

The callback

● Idea: For every asynchronous operation, pass a
function which is called when the operation is
complete

● Functions as “first class object”, in Java: Function
object

● Hollywood principle: ”Don’t call us, we’ll call you”
● Hard to compose à callback hell

The Future1 abstraction

● Explicit abstraction for an asynchronous operation
● Future represents the result of an asynchronous

computation (which may not yet be completed) and
can have three states: Pending, Error, Done

● Better composability than callbacks
● Semantic superset of Future: Reactive extensions

1 called Promise in JavaScript

Super Duper Bank

B. Boss Bossy

>
You

Make my service more
scalable!!!!!!!

(until tomorrow)

Let’s use non-blocking
I/O, Sir!

Super Duper Bank

You

🤩

Simulation of 100 requests in Spring WebFlux

Super Duper Bank

You

Not that easy…

async/await

● “Syntactic sugar” for writing asynchronous functions that look like
synchronous code

● Under the hood async/await syntax is converted to Future/Promise chains
● Still implicitly (or explicitly) return an asynchronous result
● Recently arrived in C#, Rust, JavaScript, Python, …

How async/await could look like in Java (hypothetical)

About blue and red worlds

About blue and red worlds

● Going into asynchronous world break your old interfaces and you have to
decide beforehand which world you want

● Hard to go from synchronous world to asynchronous world
● Often, we anyway just want a synchronous programming model but are

forced to use asynchronous abstractions because of the underlying
execution model

● async/await can make it look like synchronous, but we are still in the
asynchronous world

Source: http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

Chapter 3
I want my blocking
code back :-/

Choose between:

Synchronous style

• Simple
• Language integration (Exceptions,

control flow)
• Not very efficient (OS Thread per

request -> limited resource)
• Advanced stuff is more complex

(e.g. do two things in parallel)

Asynchronous style

• Hard to read (without
async/await), complex, hard
to debug

• Blue and red worlds, virality
• Rewrite your Application
• Efficient

😃
🙂

😏

😣

😣

😣
😣

😃

Is my website up in go? – Synchronous

Is my website up in go? – Asynchronous

Is my website up in go?

Is my website up in go?

Virtual thread
aka lightweight thread
aka fiber
aka green thread
aka user-mode thread

Project Loom

● Official OpenJDK Project to
implement virtual threads on the
Java platform (JVM)

● Currently in development
● Can be tried out by using a preview

build JDK

What is a virtual thread in Java?

● Like OS threads but

○ Lightweight – have as many as you want

○ Fast – context switches are cheap

● Managed by the Java Runtime
● Use existing APIs (Thread, Executors, …)
● No timeslice-based preemption (by default)

virtual thread =

Representation of the state of a computation

Something which can control the execution of the computation

+

virtual thread =

Continuation

Scheduler
+

Continuation (coroutine)

● Piece of sequential code that can
suspend itself and may be continued at a
later point

● Low level API, not to be used directly

package java.lang;
public class Continuation implements Runnable {

public Continuation(ContinuationScope scope, Runnable target);
public final void run() ;
public static void yield(ContinuationScope scope) ;
public boolean isDone();

}

Scheduler

● Scheduler schedules the continuations onto
real worker OS threads (carrier thread)

● By default ForkJoinPool Scheduler is used
which distributes work among all CPU cores

● Possible to change scheduler (e.g. choose to
have only one carrier thread -> Node.JS like)

Why virtual threads instead of asynchronous
abstractions?

● Enables non-blocking code to be (virtual-thread)-synchronous
○ Normal language constructs for conditional logic, error handling, …
○ Easy debugging

● No need to break your interfaces, no forced blue world for non-blocking IO
○ Libraries that use the JDK primitives will also automatically play well

with virtual threads (e.g. Spring Web, JDBC, …)
○ Works with legacy code without changes (in the best case)

● For advanced stuff, e.g. do two things in parallel
○ à use asynchronous abstractions (Future, Reactive) or structured

concurrency on the consumer side

Operating systemJava API / JVMApplication

Non-
blocking

APIRegister event

OS
Thread-

pool

Blocking
API

Event callback

…

Synchronous
function call

O
S Thread

Suspended

Hardware
drivers

Blocking
API

“Event loop”

Virtual thread suspended

Virtual threads allow to translate
asynchronous to synchronous APIs

carrier
thread

Virtual threadOS thread

Example: New Socket API implementation ready for virtual threads

Example: New Socket API implementation ready for virtual threads

Limitations

Temporary

● Limited debugging support
○ Dealing with a large number of virtual

threads, Setting local variables,
Suspending or resuming a virtual thread,
Stack traces for fibers will include
scheduler related frames

● Not all Java APIs virtual thread
ready as of now

Permanent

● Semantic differences to threads
à not all legacy code will work
without changes

● Native frames not supported

Super Duper Bank

B. Boss Bossy

>
You

How will the SDPS look
like with virtual

threads?

Sneak peek: Structured concurrency

● Threads normally “float around” in application
● Idea: Bind thread lifetimes to code blocks
● Currently implemented with try-with-resources syntax
● Final design still in discussion

Cool! How can I try it out?

https://wiki.openjdk.java.net/display/loom

● Download preview build https://jdk.java.net/loom/
● Configure new JDK in Intellij (or Eclipse 🙈)
● Spawn 100k Virtual Threads
● Wait for release in Java 1X

https://wiki.openjdk.java.net/display/loom
https://jdk.java.net/loom/

Key takeaways

● Blocking OS calls forces you to have one thread per ”program” (e.g. request)
● Non-Blocking I/O calls are complex
● Event-based libraries (libuv, Netty) wrap non-blocking OS calls and provide asynchronous

abstractions
○ Callback: simple, not composable, Futures: composable but “unnatural” usage
○ Async/await: Syntax to make working with Futures more natural

● Project Loom implements lightweight virtual threads in the Java platform
○ No blue/red world problem, just write synchronous code as usual, use your favorite

(synchronous-style) libraries and enjoy more efficiency (e.g. Spring Web, JDBC)
○ Virtual threads are cheap – have millions of them
○ Still uses non blocking IO under the hood – but wraps them in existing synchronous APIs

à Final question: Is the virtual thread approach superior to the event-loop model?

I want to learn more!

In depth article about Project Loom and it’s current
state (May 2020)

https://cr.openjdk.java.net/~rpressler/loom/loom/s
ol1_part1.html

Blue/red world problem http://journal.stuffwithstuff.com/2015/02/01/what-
color-is-your-function/

Build an event loop in Rust https://cfsamson.github.io/book-exploring-async-
basics/1_concurrent_vs_parallel.html

Implement green threads in Rust in 200 lines https://cfsamson.gitbook.io/green-threads-
explained-in-200-lines-of-rust/

https://cr.openjdk.java.net/~rpressler/loom/loom/sol1_part1.html
http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://cfsamson.github.io/book-exploring-async-basics/1_concurrent_vs_parallel.html
https://cfsamson.gitbook.io/green-threads-explained-in-200-lines-of-rust/

Thank you! Questions?

Lukas Steinbrecher
Developer @ Senacor

lukstei.com
github.com/lukstei

lukas.steinbrecher@senacor.com

mailto:lukas.steinbrecher@senacor.com

