Sexy async code without
await?

A first look into Project Loom in Java

What is this talk about?

Thread
Continuations

. Non Blockin 9 ,.

Threads lroq ramming
back Loop
fhac Green

Call E%iﬁ,% J FwE

Epoll Concurrenc
Clured Flbel" fReactwe

Blocking vs. non-blocking APIs
Thread per request vs. event loop
Callbacks and Futures?

What is async/await?

What is the blue/red world
problem?

Project Loom = async/await in
Java?

Lukas Steinbrecher

Developer @ Senacor

lukstei.com
github.com/lukstei

lukas.steinbrecher@senacor.com

mailto:lukas.steinbrecher@senacor.com

Chapter 1

Threads and whatis a
blocking call?

“super duper product®:

« Giro account
e Savings account

Boss B. “The Boss” Bossy You

4 >

C
53 (]

1LLL

HTTP/REST

Super Duper
Product
Service

<fill in>

-_— o = =

You

HTTP/REST

T Super Duper Bank

Super Duper Core
Banking System

¢ D

Spring Initializr X +
C [N & start.spring.io
« ege o

Cinitializr
Project Language
QO Maven Project QO Kotlin

QO Groovy

Spring Boot
QO 2.4 (SNAPSHOT) QO 2.3.1(SNAPSHOT)
QO 228 (SNAPSHOT) QO 227
QO 2115 (SNAPSHOT) QO 2114

Project Metadata

Group com.superduperbank

Dependencies

Spring Web | |

Build web, including RESTful, applications using Spring
MVC. Uses Apache Tomcat as the default embedded
container.

Artifact superduperproduct-server

Name superduperproduct-server

Description Super Duper Product Server

Package name com.superduperbank.superduperproduct-server

Packaging O war

Java Q14 OmN

GENERATE 3 + «J

EXPLORE CTRL + SPACE I l SHARE...

o0 spring-boot-server - superduperproduct/sync/BankingApi.java [spring-boot-server.main]

package com.superduperbank.superduperproduct.sync;

BankingApiException

Customer createCustomer(String name) throws BankingApiException;

cr d

BankingApiException

Account createAccount(Customer customer, String accountType) throws BankingApiException;

[X J spring-boot-server — superduperproduct/sync/AccountsController.java [spring-boot-server.main]

package com.superduperbank.superduperproduct.sync;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController

public class AccountsController {
@Autowired
BankingApiClient bankingApiClient;

@PostMapping(
String O 1
try {
Customer customer = bankingApiClient.createCustomer(
Account giro = bankingApiClient.createAccount(customer,
Account savings = bankingApiClient.createAccount(customer,
return String.format(
customer.getId(),
giro.getIban(),
savings.getIban());
} catch (BankingApiException e) {
e.printStackTrace();
return

A ~ curl -XPOST localhost:8080/super-duper-product
Successfully created super duper product for you:
Your customer number is: 1
Your giro account is: AT48321957377948380
Your savings account is: AT4832:

-1

1957377948381

Isteinbrecher (zsh) %1 deno-server (deno) ® 362

ﬁ Super Duper Bank

How many customers
can we serve?

Boss B. “The Boss” Bossy You

4 >

b

®
(]

Simulation of 100 requests in Spring Web

[CK JDK Mission Control

JVM Emwser{g‘ omline} e <7 ¥ = B || es flight_recording_180 iceApp31303.jfr 82 (=l

vgjumma«eg Analysis Results £ Threads g |=
java Application
= Threads
» &g Memory
& Lock Instances
File 1/0
zgswfet /0 Thread v Thread Group
(@ Method Profiling
) Exceptions.
§ Thread Dumps
3% Filtered Events.
V&8 JVM Internals
[l Garbage Collections
I3 6C Configuration
» (, Compilations
@ Class Loading
&2 VM Operations
¥4 TLAB Allocations
¥ 4 Environment

<No Selection> Aspect: <No Selection>) Show concurrent: v Time Range: Set Clear

L[4 Processes
I Environment Variables
<> System Properties

> Recording
34 Event Browser
[=] Properties 1 @o Results [4 v=08
Field Value
<E>Event Type [Java Thread Start, Socket Rea...
(DEnd Time 6/3/2020 4:49:59 PM - 4:50:1...
»@ Thread Too many values...

608 events

6/3/2020 4:50:00 PM 4:50:05 PM 4:50:10 PM 4:50:15 PM

© http-nio-8080-exec-63 __ [man |
== ——————

Simulation of 100 requests in Spring Web

JDK Mission Control

JVM Browser [Outline} et <7 ¥ = B | e fiight_recording_180 Duper pp31303.jfr &} =
EAummaxeg Analysis Resuts = Threads
v [lJava Application
» o viamon o Sescton> Aspect: <o Selecion> . 2 Tina range: (Bt) (Giar
@@ Lock Instances
B File /o
/3 Socket /0 Thread ~ Thread Group
@ Method Profiling +@ http-nio-8080-exec-98 main
39 Exceptions @ http-nio-8080-exec-97 main
& Thread Dumps »@ http-nio-8080-exec-96 main
¥ Filtered Events @ http-nio-8080-exec-95 main
¥ §8 VM Internals +@ http-nio-8080-exec-94 main
[l Garbage Collections @ http-nio-8080-exec-93 main
[GC Configuration 4@ http-nio-8080-exec-92 main
» @, Compilations @ http-nio-8080-exec-91 main
@® Class Loading 4@ http-nio-8080-exec-90 main
&8 VM Operations @ http-nio-8080-exec-9 main
®4TLAB Allocations +@ http-nio-8080-exec-89 main
¥ & Environment @ http-nio-8080-exec-88 main
L4 Processes »@ http-nio-8080-exec-87 main
F3 Environment Variables @ http-nio-8080-exec-86 main
<> System Properties »@ http-nio-8080-exec-85 main At 6/3/2020 4:50:06 PM - 4:50:10 PM:
P> Recording @ http-nio-8080-exec-84 main Bl Socket Read: 3.571/
¥4 Event Browser @ http-nio-8080-exec-83 main Thread: http-nio-8080-exec-8
5@ http-nio-8080-exec-82 main Bytes Read: 118 B
4@ http-nio-8080-exec-81 main JLiE AR o
4@ http: 080-exec-80 main 127.0.0.1
htp: Remote Host: localhost
@ http-nio-8080-exec-79 main At -0 - oo:
@ http-nio-8080-exec-78 main [Thread Lifespan of http-nio-8080-exec-8: N/A
@ http-nio-8080. 77 main
[Z] Properties 52 1 @o Results ‘ [# ¥ = 0| @http-nio-8080-exec-76 main
Field Value @ http-nio-8080-exec-75 main
 Event Type [Socket Read, Method Profiling... 4@ http-nio-8080-exec-74 main
(L)End Time 6/3/2020 4:49:59 PM - 4:50:1... @ http-nio-8080-exec-73 main
@ Thread http-nio-8080-exec-8 +© http-nio-8080-exec-72 main
8 events »@ http-nio-8080-exec-71 main
+@ http-nio-8080-exec-70 main
@ http-nio-8080-exec-7 main
@ http-nio-8080-exec-69 main
@ http-nio-8080-exec-68 main
+@ http-nio-8080-exec-67 main
@ http-nio-8080-exec-66 main
4@ http-nio-8080-exec-65 main - exac-
(P Do) imsiiy 6/3/2020 4:50:00 PM 4:50:05 PM 4:50:10 PM 4:50:15 PM

»@ http-nio-8080-exec-63

main

The thread

o Mechanism to provide multitasking in one process Process
o OS' threads must support all use cases and programming fon ot
languages - not very optimized Sz
« Context-switching slow ¢)
o Relatively heavy (> 2kb metadata, > Tmb stack size) v

- OS Threads are a limited resource, ~up to a few 1000
threads on a normal computer

" OS: Operating System

ass HelloRunnable implements Runnable {
public void run() {

System.out.println("Hello from a thread!");

}

public static void main(String args[]) {
L Thread myThread = new Thread(new HelloRunnable());
reads in Java

e java.lang.Thread wraps native OS threads
e To create athread, create an instance of

the Thread class and call the start() unblocking
method

e java.util.concurrent.Executors for a higher
level API (thread pools, etc.)

dispatch

creation termination

blocking

ExecutorService executor = Executors.newCachedThreadPool(5);
executor.submit(new HelloRunnable());

Source: https://www.d.umn.edu/~gshute/os/processes-and-threads.xhtml

https://www.d.umn.edu/~gshute/os/processes-and-threads.xhtml

Thread per request model

Request

Super Duper Product Service

Response

A

Request

Response

S Thread 1 :
S Thread 100

A

Super Duper Core
Banking System

TCP Server

Networking 101

listen()

TCP Client accept()

e OSresponsible for coordinating access to o]

connection

from client

external devices, e.g. network card 4.
e OS provides primitives and functions

(syscalls) to access those resources
e - Sockets as the primitive to access the
network -
e Every programming language uses this
primitives under the hood

v
read()

|

write() [data (req)

do something

write()
data (reply)

m

close()

Source: https://www.cs.dartmouth.edu/~campbell/cs60/socketprogramming.html

What happens inside a blocking syscall?

Interrupt Line)
K Operating system \ :’ ?:«Ucw has a few such lines. An electrical signal is sent Network.Gard

' L B B B B J
| have data!

Microcontroller running

THREAD 1 l firmware
// Syscall: get handle T l loop {
let soc = Socket::new(): H ! check_data(...):
] R
System call - kernel context switch let mut buff = vec![]: £
A
i // Syscall: either A, B or C Interrupt Descriptor Table
g ° I 2
2 3 i !
= (4 I/ 1
S \Y N
3 Read response !
e Data movement from Kernel 1 Data Bus: w
kS kernel space to user space Interrupt 5= CPU: Write data to OxF1... r
) handler 1/O: Writing data to OxF1... i
I/O: Finished... t
- A. Socket X in Thread 1 T =" e
1s waiting for data

Suspend thread. ---

"7 | Scheduler
5

J Main Memory Addr: OxF1...

Q

Source:
https://cfsamson.github.io/book-exploring-async-basics/4_interrupts_firmware_io.html
https://medium.com/martinomburajr/rxjava2-schedulers-2-breaking-down-the-i-o-scheduler-7e83160df2ed

~

Washington Times

WASHINGTON, D.C.

THURSDAY, JUNE 29, 1989 « SUBSCRIBER SERVICE. (308) 83 3505 20 CEM(S

Major operating systems have been
faking synchronous I/O for years

-By Paul M’ Rodriguez
/and George Archibald
it -

A homosexual prostitution ring is
under investigation™by federal and
District” authorities and includes
among its clients key o{ﬁchls of the
Reagan and Bush'administrations,
ng[llury officers, congressional
‘aides and U.S.and foreign business-

men with close social ties to Wash-

linux, windows, os x all implicated in kernel scandal of the century

criminal aspects of the ring and have
told male prostitutes and their ho-
mosexual clients that a grand jury
will deliberate over the evidence
throughout the summer, The Times
learned. . .
Reporters for this newspaper ex-
ined hundreds of credit-card

+

ington’s p 1 elite, d
+}, obtained by The Washington Times
reveal. s’

One of the ring's high-profi
ents was so well-connected,

- that he could arrange @ middle-of-
the-night tour of the White House for
+his friends on Sunday, July 3, of last
year. Among the six persons on the

' i 1 am. tour were two
male prostitutes.

Federal authorities, including the
Secret Service, are investigating

ile eli-
in fact,

drawn on both corporate
and personal cards and made pay-
able to the escort service operated

vouchers were run through'a so-

mlled “sub-merchant™ account of

Anfong the client. names con-
tained in the vouchers — and identi-
fied by prostitutes and escort

Dpors
ators — are government officials, -

locally based U.S. military officers,

by the homosexual ring. Many of the .

rybee smn. SEAVICE ¢
-‘-vvtn(«3 i

TR

b ban} names of those found to be in sen-
sitive government posts or positions
. of influence. “There is no intention
of publishing namés or facts about
the operation merely for titillation,”

gressional aides and other profes-
sionals.

3

Editors of The Times said the
newspaper would print only' the

me“vié*’k*&%g‘é[5

said Wesley Pruden, managing edi-
tor of The Times.

‘The ofTice of US. Attorney Jay B.
Stephens, former deputy White
House counsel to President Reagan,
is coordinaling - fed T of

cause of possibleconflict of interest.
Al least one highly placed Bush
administration official and a wealthy
businessman who procured homo-
sexual prostitutes from the escort
services operated by the ring are -
cooperating with the investigation,
several sources said.
Among clients who charged ho-

the inquiry but refused to discuss
the investigation pr grand jury ac-
tion... s

Several former White House col-
leagues.of Mr. Stephens are listed
among clients of the homosexual
prostitution .ring, according to the
credit-card records, and those pér-
sons have confirmed that the
‘charges were theirs. | .

Mr. Stephens' office, after first
saying it would cooperate with The
Times' inquiry, withdrew the offer

late yesterday and also declined 10—

say whether Mr. Stephens would
recuse himselfl from the case

')or credit cards over the past 18

after hé admitted having engaged in,
_sexual

| prostitute services on ma-.

months are Charles K. Dutcher, for-
mer associate director of pres-
idential personnel in the Reagan ad-
ministration, and Paul R. Balach,
Lalor Secretary Elizabeth Dole's po-
litical personnel liaison to the White
House.

-In the 1970s, Mr. Dutcher was a
cong jonal aide tp former Rep.

% Bauman, Maryland Republi-

‘'who resigned from the House

liaisons with teen-age male |

be- see PROBE, page A7

It

Source: https://twitter.com/piscisaureus/status/776709749584826369

Blocking syscalls — what's the problem?

e OS suspends thread until result of
operation is available

e To do n blocking calls at the same time
you need n threads

e Thelonger a call blocks the more
threads you need to serve more
requests - Network calls are slow

...but synchronous

calls are natural and
easy! :-/

Example — Little’s law

L =\W.

Avg. # of customers in system = arrival rate *
average time in system

For our case:
Avg. # threads needed = requests rate * response
time of external system

e.g.:
100 requests/s, 10s response time from CBS
— 1000 threads on avg. needed

—> 1000 threads * ~1MB = 1000 MB memory

| think the bofttleneck is
the thread count, Sir.

Boss B. “The Boss” Bossy You

4 >

b

C
(]

ﬁﬁ Super Duper Bank

We cannot accept this!
How can we fully utilize
our machine?

Boss B. “The Boss” Bossy You

4 >

b

Chapter 2

Let's fully utilize
our machine

Non-blocking syscalls as a solution for the

thread bottleneck problem

e Non-blocking syscalls do not suspend your thread - handle more than
one primitive per thread
e Different styles for non-blocking 10
o Polling, Multiplexed Block, ...

e epoll (Linux), kqueue (Mac), IOCP (Windows) popular APIs for non-blocking
networking — but all with different semantics

e libuv (Node.JS), mio (Tokio, Rust), Java NIO/Netty for Java: provide OS
independent abstractions for non-blocking 10

Asynchronous !=
non-blocking

® © ® @ welcome to the libuv document X 4

4 D C @O O NotSecure | docs.libuv.org/en/vi.x/ | P A S ©

Welcome to the libuv documentation

Overview

libuv is a multi-platform support library with a focus on asynchronous I/O. It was primarily
developed for use by Node.js, but it's also used by Luvit, Julia, pyuv, and others.

Note: In case you find errors in this documentation you can help by sending pull

requests!
Table of Contents
Welcome to the libuv
documentation Features
= Overview
» Features « Full-featured event loop backed by epoll, kqueue, IOCP, event ports.
o Desiieniiie « Asynchronous TCP and UDP sockets
* Downloads « Asynchronous DNS resolution
= Installation
« Asynchronous file and file system operations
‘ Next topic. « File system events
+ ANSI escape code controlled TTY
Design overview « IPC with socket sharing, using Unix domain sockets or named pipes (Windows)
+ Child processes
‘ This Page « Thread pool

Show Source

‘ Quick search

Threading and synchronization primitives

Signal handling _
High resolution clock

libuv

Network /O

File DNS User

110 Ops. code
TCl UDP JIRIEYS Pipe

10CP Thread Pool

® © ® @ Designoverview — libuv docurr X+

d

C [N @ NotSecure | docs.libuv.org/en/vi.x/design.html | P A)

always performed In a single thread, each loop’s thread.

Note: While the polling mechanism is different, libuv makes the execution model consistent across Unix
systems and Windows.

File /O

Unlike network /O, there are no platform-specific file I/O primitives libuv could rely on, so the current ap-
proach is to run blocking file I/O operations in a thread pool.

For a thorough explanation of the cross-platform file I/O landscape, checkout this post.

libuv currently uses a global thread pool on which all loops can queue work. 3 types of operations are cur-
rently run on this pool:

« File system operations
« DNS functions (getaddrinfo and getnameinfo)
« User specified code via uv_queue_work ()

Warning: See the Thread pool work scheduling section for more details, but keep in mind the thread
pool size is quite limited.

© Copyright 2014-present, libuv contributors. Created using Sphinx 1.8.5.

Event based execution model

def eventloop_main():
forever:

e Relieson async base - e = wait for next event
“«) ” if there is a callback associated with e in our list:
Don't block the event loop call the callback

def read_from_socket_async(socket s, callback):
tell 0S we are interested in events from socket s
save callback in our list

e.g. Node.JS, Eclipse Vert.x, Requesth1 [\
Event with Event
Project Reactor/Spring Callosck W e Handler

No. of Threads
WebFlux <—\/
Callback Event

Execution

Event Loop

Source: https://howtodoinjava.com/spring-webflux/spring-webflux-tutorial/

How do we handle the asynchronous
operations?

Recap: Synchronous style:

o spring-boot-server — superduperproduct/sync/AccountsController.java [spring-boot-server.main]

@RestController
AccountsController {
@Autowired
BankingApiClient

@PostMapping(

String
{
Customer customer = .createCustomer(
Account giro = .createAccount(customer

The callback

e I|dea: For every asynchronous operation, pass a
function which is called when the operation is
complete

e Functions as “first class object”, in Java: Function
object

e Hollywood principle: "Don’t call us, we'll call you”

e Hard to compose - callback hell

spring-boot-server - callback/BankingApi.java [spring-boot-server.main]

Je com.superduperbank.superduperproduct.callback;

import java.util.function.Consumer;

BankingApi {

)id createAccount(Customer customer, String accountType, Consumer<Account> onComplete, Consumer<Throwable> onError)J

spring-boot-server - callback/AccountsController.java [spring-boot-server.main]

com.superduperbank.superduperproduct.callback

org.springframework.beans.factory.annotation.Autowired
org.springframework.web.bind.annotation.PostMapping
t org.springframework.web.bind.annotation.RestController

t java.util.function.Consumer

@RestController
class AccountsController {

@Autowired

BankingApi

@PostMapping()
0i (Consumer<String> responseCallback) {
Consumer<Throwable> onError = error ->
responseCallback.accept(

-createCustomer(Mustermann", customer ->
t.createAccount(customer giro ->

I 1 .createAccount(customer savings ->
responseCallback.accept(
String.format(
customer.getId()
giro.getIban()
savings.getIban()))
}, onError);
}, onError);
onError)

The Future' abstraction

o Explicit abstraction for an asynchronous operation

o Future represents the result of an asynchronous
computation (which may not yet be completed) and
can have three states: Pending, Error, Done

o Better composability than callbacks

o Semantic superset of Future: Reactive extensions

1 called Promise in JavaScript

ﬁ Super Duper Bank

WL L SERIES NS Let’s use non-blocking

/O, Sir!

P

1 Super Duper Bank

Reactive
Microservices With
Spring Boot

support for both stacks.

The Spring portfolio provides two parallel stacks. One is based on a Servlet APl with Spring MVC and
Spring Data constructs. The other is a fully reactive stack that takes advantage of Spring WebFlux
and Spring Data's reactive repositories. In both cases, Spring Security has you covered with native

Spring Boot 2

@ Reactor

Reactive Stack
Spring WebFlux is a non-blocking web
framework built from the ground up to take
advantage of multi-core, next-generation
processors and handle massive numbers of
concurrent connections.

Netty, Servlet 3.1+ Containers

YO U Reactive Streams Adapters

Servlet Stack
Spring MVC is built on the Servlet API
and uses a synchronous blocking I/0
architecture with a one-request-per-
thread model.

Servlet Containers

Servlet API

Spring Security Reactive

Spring Security

Spring WebFlux

Spring MVC

Spring Data Reactive Repositories
Mongo, Cassandra, Redis, Couchbase, R2DBC

Spring Data Repositories
JDBC, JPA, NoSQL

¢ D

c n

Spring Initializr X +
& start.spring.io
« ege o

g initializr
Project Language
QO Maven Project QO Kotlin

QO Groovy

Spring Boot
QO 2.4 (SNAPSHOT) QO 2.3.1(SNAPSHOT)
QO 228 (SNAPSHOT) QO 227
QO 2115 (SNAPSHOT) QO 2114

Project Metadata

Group com.superduperbank

Artifact superduperproduct-server

Name superduperproduct-server

Description Super Duper Product Server

Package name com.superduperbank.superduperproduct-server

Packaging O war

Java Q14 OmN

Dependencies

Spring Web

Build web, including RESTful, applications using Spring
MVC. Uses Apache Tomcat as the default embedded
container.

Spring Reactive Web
Build reactive web applications with Spring WebFlux and
Netty.

GENERATE 3 + <«

EXPLORE CTRL + SPACE

W e

o0 spring-boot-server - futures/async/BankingApi.java [spring-boot-server.main]

package com.superduperbank.superduperproduct.futures.async;

import java.util.concurrent.CompletableFuture;

public interface bankingApi {

CompletableFuture<Account> createAccount(Customer customer, String accountType);

@ (spring-boot-server - futures/async/AccountsController.java [spring-boot-server.main]

@RestController

public class AccountsController {
@Autowired
BankingApi bankingApiClient

@PostMapping(
CompletableFuture<String>
Result result = new Result();
return bankingApiClient.createCustomer(
.thenApply(result::setCustomer)
.thenCompose(r ->
bankingApiClient.createAccount(result.c
.thenApply(r::setGiro))
.thenCompose(r ->
bankingApiClient.createAccount(result.c

.thenApply(r::setSavings))
.thenApply(r -> {

String.format(
r.customer.getId(),
r.giro.getIban(),
r.savings.getIban());

b

.exceptionally(e -> {
e.printStackTrace();
etur

});

Simulation of 100 requests in Spring WebFlux

JDK Mission Control

@s flight_recording_18020...

\ @s flight_recording_15loom...

@s flight_recording_18020...

\ @s flight_recording_14com...

@s flight_recording_14com...

sAutomated Analysis Results
v (71Java Application
Threads
» g Memory
&® Lock Instances
£ Fileljo
£ socket I/0
(@ Method Profiling
45 Exceptions
& Thread Dumps
3¢ Filtered Events
¥ 8 JVM Internals
W Garbage Collections
[6C Configuration
» (3, Compilations
(@ Class Loading
&2 VM Operations
¥4 TLAB Allocations
¥ ! Environment

La Processes
™ Environment Variables
<0> System Properties
> Recording
3% Event Browser

[=] Properties [em Resuns}

There are no results associated with this page.

£ Threads

<No Selection>

Aspect: | <No Selection>

©

| Show concurrent: v

@s fiight_recording_14com... X | = B |

]

Time Range: Set Clear

Thread

»@ server

»@ reactor-http-i
»@ reactor-http-i
»@ reactor-http-i
@ reactor-http-i
5@ reactor-http-
5@ reactor-http-i
5@ reactor-http-i
5@ reactor-http-nio-1
@ Sweeper thread
»@ Signal Dispatcher
@ Service Thread

@ Reference Handler

@ RMI TCP Connection(5)-10....

@ RMI TCP Connection(4)-10.

@ RMI TCP Connection(3)-10....
»@ RMI TCP Connection(2)-10....
@ RMI TCP Connection(1)-10....

5 RMI TCP Accept-0
@ RMI Scheduler(0)
5@ Notification Thread
»@ Monitor Ctrl-Break

»® JMX server connection time...

@ JFR Recording Scheduler
@ JFR Recorder Thread

5@ JFR Periodic Tasks

5@ GC Thread#0

@ Finalizer

@ DestroyJavaVM

@ Common-Cleaner

5@ C1 CompilerThread0

»@ Attach Listener

@ null

v Thread Group
main

main

main

main

main

main

main

main

main
system
system
system
system

RMI Runtime
RMI Runtime
RMI Runtime
RMI Runtime
RMI Runtime
system
system
system
main

RMI Runtime
RMI Runtime
system

RMI Runtime

system

main
InnocuousThreadGrc
system

system

6/4/2020

12:01:20 PM

[l

12:01:25 PM 12:01:30 PM

12:01:35 PM

Il

ﬁﬁ Super Duper Bank

Not that easy ...

async/await

e “Syntactic sugar” for writing asynchronous functions that look like
synchronous code

e Under the hood async/await syntax is converted to Future/Promise chains

e Still implicitly (or explicitly) return an asynchronous result

e Recently arrived in C#, Rust, JavaScript, Python, ...

How async/await could look like in Java (hypothetical)

00

package com.superduperbank.superduperproduct.await.async;

import com.superduperbank.superduperproduct.sync.Account;

import com.superduperbank.superduperproduct.sync.BankingApiException;
import com.superduperbank.superduperproduct.sync.Customer;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RestController;

o~NOUES WN =

import java.util.concurrent.CompletableFuture;

12 @RestController

13 public class AccountsController {
@Autowired
BankingApi bankingApiClient;

@PostMapping("/super-duper-product")
async CompletableFuture<String> createSuperDuperProduct() {
try {
Customer customer = await bankingApiClient.createCustomer("Maxi Mustermann");
Account giro = await bankingApiClient.createAccount(customer, "giro");
Account savings = await bankingApiClient.createAccount(customer, "savings");
return String.format("Successfully created super duper product for you:\nYour customer number is
%sd\nYour giro account is %s\nYour savings account is %s\n",
customer.getId(),
giro.getIban(),
savings.getIban());
} catch (BankingApiException e) {
e.printStackTrace();
return "We cannot create the product for you right now, please come back later.";

o000 spring-boot-server - superduperpi kingApi.java [spring-boot-server.main] LA N J spring-boot-server - ingApi.java [spring-boot-server.main]
package com.superduperbank.superduperproduct.sync; package com.superduperbank.superduperproduct.futures.async;

>
/*% . import java.util.concurrent.CompletableFuture;

* The core banking system of the super duper bank
*/ /%%
public interface bankingApi { * The core banking system of the super duper bank
/x% */
public interface BankingApi {
VEZ]

* Creates a customer for the super duper bank

*

* @param name name of the customer

* @return the created customer

* @throws BankingApiException

*/

Customer createCustomer(String name) throws BankingApiException;

* Creates a customer for the super duper bank

*

* @param name name of the customer

* @return the created customer

*/

CompletableFuture<Customer> createCustomer(String name);
[x* Jx
* Creates an account for a customer of the super duper bank
*

* Creates an account for a customer of the super duper bank

*

* @param customer the customer for which the account is created

* @param accountType type of account, currently supported: giro or savings

* @return the created account

* @throws BankingApiException

*/

Account createAccount(Customer customer, String accountType) throws BankingApiException;

* @param customer the customer for which the account is created

* @param accountType type of account, currently supported: giro or savings

* @return the created account

*/

CompletableFuture<Account> createAccount(Customer customer, String accountType);

and

Going into asynchronous world break your old interfaces and you have to
decide beforehand which world you want

Hard to go from synchronous world to asynchronous world

Often, we anyway just want a synchronous programming model but are
forced to use asynchronous abstractions because of the underlying
execution model

async/await can make it look like synchronous, but we are still in the
asynchronous world

Source: http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

@® o @ File System | Node.jsv14.3.0Dc X 4+
d C MW 6 nodejs.org/api/fs.html @ A 9 ~ O

» fs,access(path[, mode], callback)

Node.js

= fs.accessSync(path[, mode])

AboutitheseiDocs = fs.appendFile(path, datal, options], callback)

Usage & Example = fs.appendFileSync(path, datal, optionsl])

Assertion Testing = fs.chmod(path, mode, callback)

Async Hooks = File modes

Buffer = fs.chmodSync(path, mode)

= fs.chown(path, uid, gid, callback)
C++ Addons P g

. = fs,chownSync(path, uid, gid)
C/C++ Addons with N-API

= fs.close(fd, callback)
C++ Embedder API

. = fs.closeSync(fd)
Child Processes

= fs.constants
Cluster

.) = fs.copyFile(src, dest[, model, callback)
Command Line Options

= fs.copyFileSync(src, dest[, mode])
Console

[] []) denoexists.ts at master - denol: X 4

d Cc N @ github.com/denoland/deno/blob/master/std/fs/exists.ts P A ¢ 5/ N O

Pull requests Issues Marketplace Explore

£ denoland / deno ©wWatch~> 17k K Unstar 604k YFork 2.9k
<> Code Issues 560 Pull requests 88 Actions Security 0 Insights
Branch: master v deno / std / fs / exists.ts /<> Jump to ~ Findfile ~ Copy path
32 lines (30 sloc) 733 Bytes Raw Blame History [J & 1

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
const { lstat, lstatSync } = Deno;

4%
% Test whether or not the given path exists by checking with the file system
*/
export async function exists(filePath: string): Promise<boolean> {

try {

await lstat(filePath);
return true;
} catch (err) {
if (err instanceof Deno.errors.NotFound) {
return false;

throw err;

4%
% Test whether or not the given path exists by checking with the file system
*/
export function existsSync(filePath: string): boolean {
try {
lstatSync(filePath);
return true;
} catch (err) {
if (err instanceof Deno.errors.NotFound) {
return false;
}

throw err;

Chapter 3

| want my blocking
code back :-/

Choose between:

Connections l l l Connections
App ‘5 ‘5 5 App
Synchronous style Asynchronous style
& Simple %o Hard to read (without
& Language integration (Exceptions, async/await), complex, hard
control flow) to debug

% Not very efficient (OS Thread per Blue and red worlds, virality
request -> limited resource) Rewrite your Application

%o Advanced stuff is more complex) Efficient
(e.g. do two things in parallel)

Is my website up in go? — Synchronous

package main

import (
rp—
"net/http"

func main() {
// A slice of sample websites
urls := [Istring{
"https://www.easyjet.com/",
2 "https://www.skyscanner.de/",
"https://www.ryanair.com",
"https://wizzair.com/",

"https://www.swiss.com/",

}

for _, url := range urls {
checkUrl(url)

}

22 //checks and prints a message if a website is up or down
2 func checkUrl(url string) {
_, err := http.Get(url)

if err !'= nil {
fmt.Println(url, "is down !!!")
2 return
2 }

fmt.Println(url, "is up and running.")

+

go_async_part1.go hosted with @ by GitHub view raw

Is my website up in go? — Asynchronous

package main

import (
frPs—
"net/http"

func main() {
// A slice of sample websites
urls := [Istring{
"https://www.easyjet.com/",
"https://www.skyscanner.de/",
"https://www.ryanair.com",
"https://wizzair.com/",

"https://www.swiss.com/",

}

for _, url := range urls {
go checkUrl(url)

}

20}

//checks and prints a message if a website is up or down
func checkUrl(url string) {
_, err := http.Get(url)

if err !=nil {
fmt.Printin(url, "is down !!!")
return

¥

fmt.Println(url, "is up and running.")

}

go_async_part2.go hosted with @ by GitHub view raw

Is my website up in go?

package main package main

import (import (
"fmt" "fmt"
"net/http" "net/http"
))
func main() { func main() {
// A slice of sample websites // A slice of sample websites
10 urls := [Istring{ 1 urls := [Istring{
1 "https://www.easyjet.com/", "https://www.easyjet.com/",
12 "https://www.skyscanner.de/", 12 "https://www.skyscanner.de/",
1 "https://www.ryanair.com", "https://www.ryanair.com",
1 "https://wizzair.com/", "https://wizzair.com/",
1" "https://www.swiss.com/", "https://www.swiss.com/",
1 } }
1 for _, url := range urls { for _, url := range urls {
18 checkUrl(url) — go checkUrl(url)
1 } }
b} }
//checks and prints a message if a website is up or down //checks and prints a message if a website is up or down
2 func checkUrl(url string) { func checkUrl(url string) {
2 _, err := http.Get(url) _, err := http.Get(url)
2" if err !'= nil { if err !'= nil {
fmt.Println(url, "is down !!!") fmt.Println(url, "is down !!!")
return 2 return
28 } 2 }
2 fmt.Printin(url, "is up and running.") 2 fmt.Println(url, "is up and running.")
} ¥

go_async_part1.go hosted with @ by GitHub view raw go_async_part2.go hosted with @ by GitHub view raw

Is my website up in go?

® © ® 3 ATourof Go X +

4 C N @ tour.golang.org/concurrency/1 | @ A S] =
A Tour of Go 8 =
Goroutines

A goroutine is a lightweight thread managed by the Go runtime.

go f(x, y, z)

starts a new goroutine running

flx, y, 2)

The evaluation of f, x, y, and z happens in the current goroutine and the execution of f happ
goroutine.

Goroutines run in the same address space, so access to shared memory must be synchronizec
package provides useful primitives, although you won't need them much in Go as there are oth
(See the next slide.)

<111 >

Virtual thread

aka lightweight thread §
aka fiber

aka green thread
aka user-mode thread

® © ® 4 Main-Loom-OpenDK Wiki X+

4 > C R B wikiopenjdkjava.net/display/loom/Main

Project Loom

Compatibii

Specification Review

Compiler

Device 0

Duke

Graal

HotSpot

IDE Tooling & Support
K 7u

e Official OpenJDK Project to =i

Kulla

Lanai

implement virtual threads on the

Getting started
Networking 10

Java platform (JVM) s,

|¢P A S ® N0

pen)DKwiki B

Search

Dastboard Loom Main

Main

Created by Iis Clark, last modified by Ron Pressler on May 15, 2020

Project Loom

Fibers and Continuations

© Ssource Code
purpose of supporting easy-to-use,

Project Loom i tointendad o exlos,incubate and devr Java VM feaures and API bt o tp o themfor the ‘

the Java hitps:/github.com/openjdkioom
platform. This i by the addition of the

« Virtual threads @ Early Access Binaries

« Delimited continuations. hitp:/jck java.netfoom/

« Taik-call elimination

This OpenJDK project is sponsored by the HotSpot Group. (@ state of Loom

oomisol1_part1 htmi

e Currently in development

e (Can be tried out by using a preview
build JDK

What is a virtual thread in Java?

e Like OS threads but
o Lightweight — have as many as you want

o Fast — context switches are cheap

e Managed by the Java Runtime
e Use existing APIs (Thread, Executors, ...)
e No timeslice-based preemption (by default)

System. .printin(

D)

virtual thread =

Representation of the state of a computation

+

Something which can control the execution of the computation

virtual thread =

Continuation
+

Scheduler

Continuation (coroutine)

e Piece of sequential code that can
suspend itself and may be continued at a
later point

e Low level API, not to be used directly

package java.lang;
public class Continuation implements Runnable {

public (ContinuationScope scope, Runnable target);
public final void run() ;

public static void (ContinuationScope scope) ;

public boolean 0;

Scheduler

e Scheduler schedules the continuations onto
real worker OS threads (carrier thread)

o By default ForkJoinPool Scheduler is used
which distributes work among all CPU cores

o Possible to change scheduler (e.g. choose to
have only one carrier thread -> Node.JS like)

Why virtual threads instead of asynchronous

abstractions?

e Enables non-blocking code to be (virtual-thread)-synchronous
o Normal language constructs for conditional logic, error handling, ...
o Easy debugging
e No need to break your interfaces, no forced blue world for non-blocking 10
o Libraries that use the JDK primitives will also automatically play well
with virtual threads (e.g. Spring Web, JDBC, ...)
o Works with legacy code without changes (in the best case)
e For advanced stuff, e.g. do two things in parallel
o —» use asynchronous abstractions (Future, Reactive) or structured
concurrency on the consumer side

Virtual threads allow to translate

asynchronous to synchronous APIs

Application Java APl / JVM Operating system

Blocking || “Event loop” Non- Hardware
API blocking drivers
o, | Register event API

_ . Iy —
¢ i scarrler, Event callback - > —|I = {a}

< thread |
= :
=
| o
- 0S Blocking
: | 8 E Thread- API 4- _______ > é
| Q ; pool
! (7] i
1 C L 1 : |
1 w g 0 '
1 o] ' f
1 [0} :
1 >S5 : 1
! a : :
@ : :
= :

Q

—
A
_'_I
papuadsng
pealyl SO

Synchronous | ¢ | RN
> function call :s:OSthread > Virtual thread

Example: New Socket APl implementation ready for virtual threads

® ©® & JEP353:Reimplement the Legs X =+

d cn

Open)DK

Workshop
OpenJDK FAQ
Installing
Contributing
Sponsoring
Developers' Guide
Vulnerabilities

Mailing lists
IRC - Wiki

Bylaws - Census
Legal

JEP Process

Source code
Mercurial
Bundles (6)

Groups

(overview)

2D Graphics

Adoption

AWT

Build

Compatibility &
Specification
Review

Compiler

Conformance

Core Libraries

Governing Board

HotSpot

IDE Tooling & Support

Internationalization

JMX

Members

Networking

Porters

Quality

Security

Serviceability

Sound

Swing

Vulnerability

Web

Projects

(overview)

Amber

Annotations Pipeline

& openjdk.java.net/jeps/353

| @ A ¢ ®

JEP 353: Reimplement the Legacy Socket API

Owner Alan Bateman
Type Feature
Scope JDK
Status Closed/Delivered
Release 13
Component core-libs/java.net
Discussion net dash dev at openjdk dot java dot net
Effort S
Reviewed by Brian Goetz, Chris Hegarty, Michael McMahon
Endorsed by Brian Goetz
Created 2019/02/06 13:49
Updated 2019/08/16 07:21
Issue 8218559

Summary

Replace the underlying implementation used by the java.net.Socket and
java.net.ServerSocket APIs with a simpler and more modern implementation
that is easy to maintain and debug. The new implementation will be easy to adapt
to work with user-mode threads, a.k.a. fibers, currently being explored in Project
Loom.

Motivation

The java.net.Socket and java.net.ServerSocket APIs, and their underlying
implementations, date back to JDK 1.0. The implementation is a mix of legacy Java
and C code that is painful to maintain and debug. The implementation uses the
thread stack as the 1/0 buffer, an approach that has required increasing the default
thread stack size on several occasions. The implementation uses a native data
structure to support asynchronous close, a source of subtle reliability and porting
issues over the years. The implementation also has several concurrency issues
that require an overhaul to address properly. In the context of a future world of
fibers that park instead of blocking threads in native methods, the current
implementation is not fit for purpose.

Annotations Pipeline
2.0

Audio Engine

Build Infrastructure

Caciocavallo

Closures

Code Tools

Coin

Common VM
Interface

Compiler Grammar

Detroit

Developers' Guide

Device I/0

Duke

Font Scaler

Framebuffer Toolkit

Graal

Graphics Rasterizer

HarfBuzz Integration

IcedTea

JDK 6

DK 7

JDK 7 Updates

JDK 8

JDK 8 Updates

JDK 9

JDK (... 13, 14, 15)

JDK Updates

JavaDoc.Next

Jigsaw

Kona

Kulla

Lambda

Lanai

Locale Enhancement

Loom

Memory Model
Update

Metropolis

Mission Control

Modules

Multi-Language VM

Nashorn

New 1/0

OpenjFX

Panama

Penrose

Port: AArch32

Port: AArch64

Port: BSD

Port: Haiku

Port: Mac 0S X

Port: MIPS

Port: Mobile

Port: PowerPC/AIX

& openjdk.java.net/jeps/353

® ©® & JEP 353:Reimplement the Legz X =+

4 cn

P A S & =

Description

The java.net.Socket and java.net.ServerSocket APIs delegate all socket
operations to a java.net.SocketImpl, a Service Provider Interface (SPI)
mechanism that has existed since JDK 1.0. The built-in implementation is termed
the “plain” implementation, implemented by the non-public PlainSocketImpl with
supporting classes SocketInputStream and SocketOutputStream.
PlainSocketImpl is extended by two other JDK-internal implementations that
support connections through SOCKS and HTTP proxy servers. By default, a Socket
and ServerSocket is created (sometimes lazily) with a SOCKS based SocketImpl.
In the case of ServerSocket, the use of the SOCKS implementation is an oddity
that dates back to experimental (and since removed) support for proxying server
connections in JDK 1.4.

The new implementation, NioSocketImpl, is a drop-in replacement for
PlainSocketImpl. It is developed to be easy to maintain and debug. It shares the
same JDK-internal infrastructure as the New I/O (NIO) implementation so it doesn't
need its own native code. It integrates with the existing buffer cache mechanism
so that it doesn’t need to use the thread stack for I/O. It uses
java.util.concurrent locks rather than synchronized methods so that it can
play well with fibers in the future. In JDK 11, the NIO SocketChannel and the other
SelectableChannel implementations were mostly re-implemented with the same
goal in mind.

The following are a few points about the new implementation:

= SocketImpl is a legacy SPI mechanism and is very under-specified. The
new implementation attempts to be compatible with the old
implementation by emulating unspecified behavior and exceptions where
applicable. The Risks and Assumptions section below details the behavior
differences between the old and new implementations.

Socket operations using timeouts (connect, accept, read) are
implemented by changing the socket to non-blocking mode and polling the
socket.

= The java.lang.ref.Cleaner mechanism is used to close sockets when
the SocketImpl is garbage collected and the socket has not been explicitly
closed.

= Connection reset handling is implemented in the same way as the old

]
[JRT]) java.base i 1 NioSocketimpl park
[& Project v < & — T NioSocketimpljava

3 FileLockimpl
A FileLockTable
% Groupable
3 InheritedChannel
4 Interruptible
3 Invoker

13 10Status
2 IoUtil
3 I0VecWrapper
2 KQueue
3 KQueuePoller

1 KQueuePort
4 KQueueSelectorimpl!
3 KQueueSelectorProvic
3 MembershipKeylmpl
3 MembershipRegistry
) NativeDispatcher
3 NativeObject
3 NativeSocketAddress
3 NativeThread
A NativeThreadSet
2 Net

1 NioSocketimpl
2 OptionKey

1 PendingFuture
3 Pipelmpl
4 Poller
4 PollerProvider
4 PoliSelectorimpl
3 PoliSelectorProvider
) Port
3 Reflect

1 secrets
% SelChimpl

1 selectionKeyimpl
4 Selectorimp|
) SelectorProviderimpl
3 ServerSocketAdaptor
A ServerSocketChannell
A SimpleAsynchronoust
3 SinkChannellmp!
3 SocketAdaptor
4 SocketChannellmpl
3 SocketDispatcher
3 SocketOptionRegistry

¥ 1: Project

7: Structure

o Spring |+ 9: Git : TODO
[0 Shortcuts conflicts: Move Caret to Matching Brace and 2 more shortcut conflict with macOS shortcuts. Modify these shortcuts or change macOS system settings. // Modify shortcuts // Don't show again (3 minutes ago)

Example: New Socket APl implementation ready for virtual threads

IOException

park(FileDescriptor fd event nanos)
Thread t = Thread.currentThread()

(t.isvirtual()) {

AsyncSpringBootServerApplication

I0Exception {

fdval = fdval(fd)
Poller.register(fdval, event)

(isopen()) {
{

(GELL

=0 {

VirtualThreads.park()

{

VirtualThreads.park(nanos)

(t.isInterrupted()) {

|

SocketException(

Poller.deregister(fdval, event)

millis
(nanos == 8) {
millis = -1
{
millis
}
Net.poll(fd, event

.toMillis(nanos)

millis)

e

Q Event Log

1 master

Moy

aseqereq (1

Limitations

Temporary

Limited debugging support

o Dealing with a large number of virtual
threads, Setting local variables,
Suspending or resuming a virtual thread,
Stack traces for fibers will include
scheduler related frames

Not all Java APIs virtual thread
ready as of now

Permanent

o Semantic differences to threads
—> not all legacy code will work
without changes

o Native frames not supported

ﬁﬁ Super Duper Bank

How will the SDPS look
like with virtual
threads?

B. Boss Bossy

o0 spring-boot-server - superduperproduct/sync/BankingApi.java [spring-boot-server.main]

package com.superduperbank.superduperproduct.sync;

BankingApiException

Customer createCustomer(String name) throws BankingApiException;

cr d

BankingApiException

Account createAccount(Customer customer, String accountType) throws BankingApiException;

[X J spring-boot-server — superduperproduct/sync/AccountsController.java [spring-boot-server.main]

package com.superduperbank.superduperproduct.sync;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController

public class AccountsController {
@Autowired
BankingApiClient bankingApiClient;

@PostMapping(
String O 1
try {
Customer customer = bankingApiClient.createCustomer(
Account giro = bankingApiClient.createAccount(customer,
Account savings = bankingApiClient.createAccount(customer,
return String.format(
customer.getId(),
giro.getIban(),
savings.getIban());
} catch (BankingApiException e) {
e.printStackTrace();
return

Sneak peek: Structured concurrency

Threads normally “float around” in application

|ldea: Bind thread lifetimes to code blocks

Currently implemented with try-with-resources syntax
Final design still in discussion

ng-boot-server - VirtualThread.java [spring-boot-server.main]
ThreadFactory vtf = Thread.builder().virtual().factory()

(ExecutorService e = Executors.newUnboundedExecutor(vtf)) {
e.submit(taskl)

e.submit(task2)
H

Cool! How can | try it out?

https://wiki.openjdk.java.net/display/loom

o Download preview build https://jdk.java.net/loom/
« Configure new JDK in Intellij (or Eclipse &)

o Spawn 100k Virtual Threads
e Wait for release in Java 1X

https://wiki.openjdk.java.net/display/loom
https://jdk.java.net/loom/

CACLCEWENTS

® Blocking OS calls forces you to have one thread per "program” (e.g. request)
® Non-Blocking I/0 calls are complex
® Event-based libraries (libuv, Netty) wrap non-blocking OS calls and provide asynchronous
abstractions
o Callback: simple, not composable, Futures: composable but “unnatural” usage
o Async/await: Syntax to make working with Futures more natural
® Project Loom implements lightweight virtual threads in the Java platform
o No blue/red world problem, just write synchronous code as usual, use your favorite
(synchronous-style) libraries and enjoy more efficiency (e.g. Spring Web, JDBC)
o Virtual threads are cheap — have millions of them
o Still uses non blocking |0 under the hood — but wraps them in existing synchronous APls
- Final question: Is the virtual thread approach superior to the event-loop model?

| want to learn more!

|n depth article about Project Loom and it,S Current https://cr.openjdk.java.net/~rpressler/loom/loom/s
ol1_part1.html
state (May 2020)

http://journal.stuffwithstuff.com/2015/02/01/what-
color-is-your-function/

Blue/red world problem

: A https://cfsamson.github.io/book-exploring-async-
BUIld an event |00p In RUSt basics/1_concurrent vs parallel.html

Implement green threads in RUSt in 200 Iines https://cfsamson.gitbook.io/green-threads-

explained-in-200-lines-of-rust/

https://cr.openjdk.java.net/~rpressler/loom/loom/sol1_part1.html
http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://cfsamson.github.io/book-exploring-async-basics/1_concurrent_vs_parallel.html
https://cfsamson.gitbook.io/green-threads-explained-in-200-lines-of-rust/

Thank you! Questions?

Lukas Steinbrecher

Developer @ Senacor

lukstei.com
github.com/lukstei

lukas.steinbrecher@senacor.com

mailto:lukas.steinbrecher@senacor.com

